
1

Evaluating the Evolution of YOLO (You Only Look
Once) Models: A Comprehensive Benchmark Study

of YOLO11 and Its Predecessors
Nidhal Jegham, Chan Young Koh, Marwan Abdelatti, and Abdeltawab Hendawi

Abstract—This study presents a comprehensive benchmark
analysis of various YOLO (You Only Look Once) algorithms,
from YOLOv3 to the newest addition. It represents the first re-
search to comprehensively evaluate the performance of YOLO11,
the latest addition to the YOLO family. It evaluates their per-
formance on three diverse datasets: Traffic Signs (with varying
object sizes), African Wildlife (with diverse aspect ratios and at
least one instance of the object per image), and Ships and Vessels
(with small-sized objects of a single class), ensuring a comprehen-
sive assessment across datasets with distinct challenges. To ensure
a robust evaluation, we employ a comprehensive set of metrics,
including Precision, Recall, Mean Average Precision (mAP),
Processing Time, GFLOPs count, and Model Size. Our analysis
highlights the distinctive strengths and limitations of each YOLO
version. For example: YOLOv9 demonstrates substantial accu-
racy but struggles with detecting small objects and efficiency
whereas YOLOv10 exhibits relatively lower accuracy due to
architectural choices that affect its performance in overlapping
object detection but excels in speed and efficiency. Additionally,
the YOLO11 family consistently shows superior performance in
terms of accuracy, speed, computational efficiency, and model
size. YOLO11m achieved a remarkable balance of accuracy
and efficiency, scoring mAP50-95 scores of 0.795, 0.81, and
0.325 on the Traffic Signs, African Wildlife, and Ships datasets,
respectively, while maintaining an average inference time of
2.4ms, a model size of 38.8Mb, and around 67.6 GFLOPs on
average. These results provide critical insights for both industry
and academia, facilitating the selection of the most suitable
YOLO algorithm for diverse applications and guiding future
enhancements.

Index Terms—YOLO (You Only Look Once), YOLO11,
YOLOv10, Object detection, Ultralytics, Benchmark Analysis.

I. INTRODUCTION AND POSITIONING

Object detection is an essential component of computer
vision systems, enabling automated identification and local-
ization of objects within images or video frames [34]. Its
applications span from autonomous driving and robotics [16]
[5] [20] [56] to inventory management, video surveillance, and
sports analysis [4] [23] [55] [69].

Over the years, object detection has developed significantly.
Initially, traditional methods such as the Viola-Jones algorithm
[63] and the Deformable Part-based Model (DPM) [15] used
handcrafted features and were effective for applications such
as face detection [63], pedestrian detection [10], and video
surveillance [3]. However, these methods had limitations in
robustness and generalization. With the advancement of deep
learning, network-based methods have since become the pri-

mary approach. These methods are usually classified into two
categories: one-stage and two-stage approaches.

One-stage methods such as RetinaNet [32] and SSD (Sin-
gle Shot MultiBox Detector) [35] perform detection in a
single pass, balancing speed and accuracy. In contrast, two-
stage methods, such as Region-based Convolutional Neural
Networks (R-CNN) [19], generate region proposals and then
perform classification, offering high precision but being com-
putationally intensive.

Among one-stage object detection methods, YOLO (You
Only Look Once) stands out for its robustness and effi-
ciency. Initially introduced in 2015 by Redmon et al. [21],
YOLO redefined object detection by predicting bounding
boxes and class probabilities directly from full images in
a single evaluation [47]. This innovative approach allowed
YOLOv1 to achieve real-time object detection with impressive
accuracy. Building upon this foundation, YOLOv2 [48] incor-
porated several key enhancements. It integrated the Darknet-
19 framework, a 19-layer convolutional neural network that
improved feature extraction. YOLOv2 also introduced batch
normalization and employed data augmentation techniques
inspired by the VGG architecture [57] to enhance the model’s
generalization. YOLOv3 [49] further advanced the model with
the Darknet-53 framework, a deeper network that significantly
improved feature extraction capabilities. This version also
utilized a Feature Pyramid Network (FPN)-inspired design,
which allowed for better detection across various object scales
by combining high-level semantic features with low-level
detailed features, and a Three-Scale detection mechanism that
improved accuracy for objects of different sizes.

Following YOLOv3, the model’s development branched into
various communities, leading to several notable iterations.
YOLOv4 [6], developed by Bochkovskiy et al., introduced
enhancements such as Spatial Pyramid Pooling (SPP) and the
Path Aggregation Network (PAN). SPP aggregates features
from multiple scales, preserving spatial information, while
PAN improves the fusion of features between layers, resulting
in improved speed and accuracy. YOLOv5 [60] marked a
significant transition by moving from the Darknet framework
to PyTorch, a popular deep learning library. This transition
made the model more accessible and easier to customize. The
architecture incorporated strided convolution layers, which
reduced computational load, and Spatial Pyramid Pooling Fast
(SPPF) layers, optimizing memory usage while maintaining
high performance. YOLOv6 and YOLOv7 continued this tra-
jectory with innovative architectures. YOLOv6 [29] introduced

ar
X

iv
:2

41
1.

00
20

1v
1 

 [
cs

.C
V

] 
 3

1 
O

ct
 2

02
4



2

Jun 8, 2015

Dec 25, 2016

Apr 8, 2018

Apr 23, 2020

Jun 9, 2020

Jul 23, 2020

Nov 16, 2020

May 10, 2021

Jun 1, 2021

Jul 18, 2021

Jun, 2022

Jul 6, 2022

Jan 10, 2023

Jan 13, 2023

May 2, 2023

Jan 30, 2024

Feb 21, 2024

May 23, 2024

Sep 30, 2024

YOLO is introduced
Redmon, J. "You only look 
once: Uni�ed, real-time 
object detection".

YOLOv2 (YOLO9000)
Redmon, J., & Farhadi, A. 
"YOLO9000: better, faster, stronger"

YOLOv3
Farhadi, A., & Redmon, J. 
"Yolov3: An incremental 
improvement"

YOLOv4
Bochkovskiy, A., et al. "Yolov4: 
Optimal speed and accuracy of 
object detection"

YOLOv5
Glenn Jocher (Ultralytics) 
YOLOv5 GitHub

PP-YOLO
Long, X. et al. "PP-YOLO: An 
e�ective and e�cient 
implementation of object detector"

Scaled-YOLOv4
Wang, C. Y., Bochkovskiy, A., et al. 
"Scaled-YOLOv4: Scaling cross 
stage partial network"

YOLOR
Wang, C. Y. et al. "You only learn one 
representation: Uni�ed network for 
multiple tasks"

Jun 1, 2021

YOLOS
Fang, Y. et al. "You only look at one 
sequence: Rethinking transformer 
in vision through object detection.

YOLOX
Zheng Ge et al. "YOLOX: Exceeding 
YOLO Series in 2021"

YOLOv6
Li, Chuyi et al. "YOLOv6: A single-
stage object detection framework 
for industrial applications." 

YOLOv7
Wang, C. Y., Bochkovskiy, A., et al. 
"YOLOv7: Trainable bag-of-freebies 
sets new state-of-the-art for real-
time object detectors"

YOLOv8
Glenn Jocher (Ultralytics) 
YOLOv8 GitHub

YOLOv6 3.0
Li, Chuyi et al. "Yolov6 v3. 0: A full-
scale reloading" 

YOLO-NAS
DECI-AI
YOLO-NAS - GitHub

YOLO-World
Cheng, T. et al. "Yolo-world: Real-
time open-vocabulary object 
detection"

YOLOv9
Wang, C. Y. et al. "Yolov9: Learning 
what you want to learn using 
programmable gradient information"

YOLOv10
Wang, A., Chen et al. "Yolov10: Real-
time end-to-end object detection"

YOLOv11
Glenn Jocher (Ultralytics) 
YOLOv11 GitHub

Fig. 1. Evolution of YOLO Algorithms throughout the years.

RepVGG, an architecture that simplified convolutional layers
during inference, and CSPStackRep blocks, which improve
accuracy by splitting the feature map into two parts to process
them separately. In addition, YOLOv6 employed a hybrid
channel strategy for better feature representation. YOLOv7
[65] leveraged the Extended Efficient Layer Aggregation Net-
work (E-ELAN), a novel architecture that improved efficiency
and effectiveness by enhancing information flow between
layers.

The most recent versions of YOLO, including YOLOv8,
YOLOv9, YOLOv10, and YOLO11 represent the forefront
of the model’s development. YOLOv8 [58], released by Ul-
tralytics, introduced semantic segmentation capabilities, al-
lowing the model to classify each pixel of an image, and
provided scalable versions to meet various application needs,
from resource-constrained environments to high performance
systems alongside other tasks such as pose estimation, image
classification, and oriented object detection (OOB). YOLOv9
[66] built on its predecessors’ architectural advancements
with Programmable Gradient Information (PGI), which op-
timizes gradient flow during training, and the Generalized
Efficient Layer Aggregation Network (GELAN), which further
improved performance by enhancing layer information flow.
YOLOv10 [64], developed by Tsinghua University, eliminated
the need for Non-Maximum Suppression (NMS) used by its
predecessors, a technique used to eliminate duplicate predic-
tions and pick the bounding boxes with the most confidence,
by introducing a dual assignment strategy in its training proto-
col. Additionally, YOLOv10 features lightweight classification
heads, spatial-channel decoupled downsampling, and rank-
guided block design, making it one of the most efficient and
effective YOLO models to date. Lastly, YOLO11 [26], also
introduced by Ultralytics, retains the capabilities of YOLOv8
with applications such as Instance Segmentation, Pose Es-
timation, and Oriented Object Detection while providing 5
scalable versions for different use cases. YOLO11 replaces
the C2f block from YOLOv8 with the more efficient C3k2

block, delivering improved performance without compromis-
ing speed. Additionally, it introduces the C2PSA (Cross Stage
Partial with Spatial Attention) module, which improves spatial
attention in feature maps, increasing accuracy, especially for
small and overlapping objects.

This object detection algorithm has undergone several de-
velopments as seen in Figure 1 achieving competitive results
in terms of accuracy and speed, making it the preferred
algorithm in various fields such as ADAS (Advanced Driver-
Assist System) [47], video surveillance [38], face detection
[39], and many more [18]. For instance, YOLO plays a crucial
role in the agriculture field by being implemented in numerous
applications such as crop classification [1] [17], pest detection
[33], automated farming [67] [37], and virtual fencing [62].
Moreover, YOLO has been utilized on numerous occasions in
the field of healthcare such as cancer detection [?] [45], ulcer
detection [2], medicine classification [36] [42], and health
protocols enforcement [11].

In recent years, Ultralytics has played a crucial role in the
advancement of YOLO by maintaining, improving, and mak-
ing these models more accessible [46]. Notably, Ultralytics has
streamlined the process of fine-tuning and customizing YOLO
models, a task that was considerably more complex in earlier
iterations. The introduction of user-friendly interfaces, com-
prehensive documentation, and pre-built modules has greatly
simplified essential tasks such as data augmentation, model
training, and evaluation. Moreover, the development of scal-
able model versions allows users to select models tailored
to specific resource constraints and application requirements,
thereby facilitating more effective fine-tuning. For instance,
YOLOv8n is favorable over YOLOv8m in scenarios where
speed and computational efficiency are prioritized over accu-
racy, making it ideal for resource-constrained environments.
The integration of advanced tools for hyperparameter tuning,
automated learning rate scheduling, and model pruning has
further refined the customization process. Continuous updates
and robust community support have also contributed to making



3

YOLO models more accessible and adaptable for a wide range
of applications.

This paper aims to present a comprehensive comparative
analysis of the YOLO algorithm’s evolution. It makes a signif-
icant contribution to the field by offering the first comprehen-
sive evaluation of YOLO11, the newest member of the YOLO
family. By leveraging pre-trained models and fine-tuning them,
we evaluate their performance across three diverse custom
datasets, each with varying sizes and objectives. Consistent
hyperparameters are applied to ensure a fair and unbiased
comparison. The analysis delves into critical performance met-
rics, including speed, efficiency, accuracy, and computational
complexity, as measured by GFLOPs count and model size. In
addition, we explore the real-world applications of each YOLO
version, highlighting their strengths and limitations across
different use cases. Through this comparative study, we aim
to provide valuable insights for researchers and practitioners,
offering a deeper understanding of how these models can be
effectively applied in various scenarios.

The rest of this paper is organized as follows: Section
2 covers related work. Section 3 describes the datasets, the
models, and the experimental setup, including the hyperpa-
rameters and evaluation metrics used. Section 4 presents the
experimental results and comparative analysis alongside a
discussion. Finally, Section 5 concludes with insights drawn
from the study.

II. RELATED WORK

The YOLO (You Only Look Once) algorithm is considered
one of the most prominent object detection algorithms. It
achieves state-of-the-art speed and accuracy, and its various
applications have made it indispensable in numerous fields
and industries. Numerous researchers have shown interest in
this object detection algorithm by publishing papers reviewing
its evolution, fine-tuning its models, and benchmarking its
performance against other computer vision algorithms. This
widespread interest underscores YOLO’s important role in
advancing the field of computer vision.

The paper in [14] examines seven semantic segmentation
and detection algorithms, including YOLOv8, for cloud seg-
mentation from remote sensing imagery. It conducts a bench-
mark analysis to evaluate their architectural approaches and
identify the most performing ones based on accuracy, speed,
and potential applications. The research aims to produce ma-
chine learning algorithms that can perform cloud segmentation
using only a few spectral bands, including RGB and RGBN-IR
combinations.

The authors of the paper in [22] review the evolution of the
YOLO variants from version 1 to version 8, examining their in-
ternal architecture, key innovations, and benchmarked perfor-
mance metrics. However, YOLOv9, YOLOv10, and YOLO11
are not considered in the analysis. The paper highlights the
models’ applications across domains like autonomous driving
and healthcare and proposes incorporating federated learn-
ing to improve privacy, adaptability, and generalization in
collaborative training. The review, however, limits its focus
to mAP (mean Average Precision) for accuracy evaluation,

neglecting other key metrics such as Recall and Precision.
Additionally, it considers FPS (frames per second) as the sole
measure of computational efficiency, excluding the impact of
preprocessing, inference, postprocessing times, GFLOPs, and
size.

The paper in [12] thoroughly analyzes single-stage object
detectors, particularly YOLOs from YOLOv1 to YOLOv4,
with updates to their architecture, performance metrics, and
regression formulation. Additionally, it provides an overview
of the comparison between two-stage and single-stage object
detectors, several YOLO versions from version 1 to version 4,
applications utilizing two-stage detectors, and future research
prospects.

The authors of the paper in [53] explore the evolution
of the YOLO algorithms from version 1 to 10, highlighting
their impact on automotive safety, healthcare, industrial man-
ufacturing, surveillance, and agriculture. The paper highlights
incremental technological advances and challenges in each
version, indicating a potential integration with multimodal,
context-aware, and General Artificial Intelligence systems for
future AI-driven applications. However, the paper does not
include a benchmarking study or a comparative analysis of the
YOLO models, leaving out performance comparisons across
the versions.

The paper in [61] explores the development of the YOLO
algorithm till the fourth version. It highlights its challenges
and suggests new approaches, highlighting its impact on object
detection and the need for ongoing study.

The authors in the work in [27] analyze the YOLO algo-
rithm, focusing on its development and performance. They
conduct a comparative analysis of the different versions of
YOLO till the 8th version, highlighting the algorithm’s po-
tential to provide insights into image and video recognition
and addressing its issues and limitations. The paper focuses
exclusively on the mAP metric, overlooking other accuracy
measures such as Precision and Recall. Additionally, it ne-
glects speed and efficiency metrics limiting the scope of the
comparative study. The paper also omits the evaluation of the
most recent models, YOLOv9, YOLOv10, and YOLO11.

This paper makes several key contributions: (i) It pioneers a
comprehensive comparison of YOLO11 against its predeces-
sors across their scaled variants from nano- to extra-large; (ii)
it offers deep insights into the structural evolution of these al-
gorithms by evaluating their performance across three diverse
datasets of various object properties; and (iii) our performance
evaluation extends beyond mAP and FPS to include critical
metrics such as Precision, Recall, Preprocessing, Inference,
and Postprocessing Time, GFLOPs, and model size. These
metrics provide valuable insights to guide the selection of
the optimal YOLO algorithm for specific use cases for both
industry professionals and academics.

III. BENCHMARK SETUP

A. Datasets

This study aims to conduct in-depth benchmark research
and assess the YOLO algorithms provided by the Ultralytics



4

library. The main goal is to provide a thorough and com-
parative analysis of these models and explain their strengths,
deficiencies, and possible applications.

This paper is made possible using several publicly accessi-
ble datasets on Kaggle and Roboflow. The selection of the
datasets is based on the increasing implementation of the
YOLO algorithms in the fields of Autonomous driving [47]
[54] [30] [7], satellite imagery [31] [8] [44], and wildlife
conservation [50] [68] [51]. Moreover, each picked dataset
presents unique difficulties and situations for object detection
with varying image sizes and number of observations along-
side the number of classes.

1) Traffic Signs Dataset: The Traffic Signs dataset by Radu
Oprea is an open-source dataset on Kaggle that contains
around 55 classes across 3253 training and 1128 validation
images of traffic signs in different sizes and environments
[40]. All of the images in the dataset are initially in a size
of 640×640 with no labels for False Positives detection.
Undersampling techniques were applied to this dataset to
balance the different classes. This dataset is crucial for applica-
tions in autonomous driving, traffic management, road safety,
and intelligent transportation systems. However, it presents
challenges due to the varying sizes of target objects and the
similarities in patterns across different classes, complicating
the detection process.

2) Africa Wild Life Dataset: The Africa Wild Life dataset
is an open-source Kaggle dataset by Bianca Ferreira, designed
for real-time animal detection in nature reserves [59]. It fea-
tures four common African animal classes: Buffalo, elephant,
rhino, and zebra. Each class is represented by at least 376
images collected via Google image searches and manually
labeled in the YOLO format. The challenges of this dataset
are the varying aspect ratios, with each image containing at
least one instance of the specified animal class and potentially
multiple instances or occurrences of other classes. Moreover,
overlapping these target objects makes the detection process
more challenging. This dataset is essential for applications
in wildlife conservation, anti-poaching efforts, biodiversity
monitoring, and ecological research.

3) Ships/Vessels Dataset: The Ships dataset is an exten-
sive open-source collection containing approximately 13.5k
images, collected by Siddharth Sah from numerous Roboflow
datasets, curated explicitly for ship detection [52]. Each image
has been manually annotated with bounding boxes in the
YOLO format, ensuring precise and efficient detection of
ships. This dataset features a single class, ”ship,” allowing
for streamlined and focused analysis. However, the relatively
small size of the target objects and their varying rotations
pose challenges for detection, particularly for the YOLO
algorithm, which often struggles with small object detection
and objects with varying orientations. The dataset is essential
for various practical applications such as maritime safety,
fisheries management, marine pollution monitoring, defense,
maritime security, and more.

B. Models
1) Comparative Analysis: Ultralytics vs. Original YOLO

Models: In this subsection, we will conduct a comparative

TABLE I
ULTRALYTICS-SUPPORTED LIBRARY TASKS AND MODELS

YOLO
Version Inference Validation Training Pre-

trained
YOLOv1 No No No No
YOLOv2 No No No No
YOLOv3-u (Ultralytics) Yes Yes Yes Yes
YOLOv4 No No No No
YOLOv5-u (Ultralytics) Yes Yes Yes Yes
YOLOv6 Yes Yes Yes No
YOLOv7 No No No No
YOLOv8 Yes Yes Yes Yes
YOLOv9 Yes Yes Yes Yes
YOLOv10 Yes Yes Yes Yes
YOLO11 Yes Yes Yes Yes

analysis between the models provided by Ultralytics and their
original counterparts on the Traffic Signs dataset provided by
Radu Oprea [40] using the same hyperparameters in Table
V. The objective is to highlight the differences between
Ultralytics models and the original versions, which justifies the
exclusion of YOLOv4 [6], YOLOv6 [29], and YOLOv7 [65]
from this paper due to the lack of support for these models
by Ultralytics. This analysis will demonstrate why focusing
exclusively on Ultralytics-supported models ensures a fair and
consistent benchmark evaluation.

a) Ultralytics Supported Models and Tasks:: Ultralytics
library provides researchers and programmers various YOLO
models for inference, validation, training, and export. Based
on the results of Table I, we notice that Ultralytics does not
support YOLOv1, YOLOv2, YOLOv4, and YOLOv7. Con-
cerning YOLOv6, the library only supports the configuration
*.yaml files without the pre-trained *.pt models.

b) Performance Comparison of Ultralytics and Original
Models:: Based on the results of our comparative analysis of
the Ultralytics models and their original counterparts on the
Traffic Signs dataset presented in Table II, we observe signifi-
cant discrepancies between the performance of the Ultralytics
models and their original counterparts. Notably, Ultralytics’
versions of YOLOv5n (nano) and YOLOv3 demonstrate su-
perior performance, underscoring the enhancements and opti-
mizations implemented by Ultralytics. Conversely, the original
YOLOv9c (compact) slightly outperforms its Ultralytics ver-
sion, potentially due to the lack of extensive optimization for
this newer model by Ultralytics. These observations highlight
that the Ultralytics models have undergone substantial mod-
ifications, making a direct comparison with the original ver-
sions inequitable. Consequently, the noticeable performance
discrepancy between the two models, including the original
and Ultralytics models in the same benchmarking study, would
not provide a fair or accurate assessment. Therefore, this paper
will focus exclusively on the Ultralytics-supported versions to
ensure consistent and fair benchmarks.

2) YOLOv3u: YOLOv3, based on its predecessors, aims to
improve localization errors and detection efficiency, particu-
larly for smaller objects. It uses the Darknet-53 framework,
which has 53 convolutional layers and achieves double the
speed of ResNet-152 [49]. YOLOv3 also incorporates ele-
ments from the Feature Pyramid Network (FPN), such as
residual blocks, skip connections, and up-sampling, to enhance



5

TABLE II
ULTRALYTICS AND ORIGINAL YOLO PERFORMANCE COMPARISON

Version Source mAP50 mAP50-95

YOLOv9c (compact) Ultralytics 0.845 0.748
Github 0.881 0.786

YOLOv5n (nano) Ultralytics 0.756 0.663
Github 0.429 0.367

YOLOv3 Ultralytics 0.766 0.67
Github 0.562 0.471

its ability to detect objects efficiently across varying scales, as
seen in Figure 2. The algorithm generates feature maps at
three distinct scales, down-sampling the input at factors of
32, 16, and 8, and uses a three-scale detection mechanism to
detect large, medium, and small-sized objects using distinct
feature maps. Despite its improvements, YOLOv3 still faces
challenges in achieving precise results for medium and large-
sized objects, so Ultralytics released YOLOv3u. YOLOv3u is
an improved version of YOLOv3 that utilizes an anchor-free
detection method used later in YOLOv8 and improves upon
the accuracy and speed of YOLOv3, especially for medium
and large-sized objects.

Fig. 2. YOLOv3 architecture showcasing the residual blocks and the
upsampling layers to enhance object detection efficiency through different
scales [9].

3) YOLOv5u: YOLOv5, proposed by Glenn Jocher, tran-
sitions from the Darknet framework to PyTorch, retaining
many improvements from YOLOv4 [60] [24] and utilizing
CSPDarknet as its backbone. CSPDarknet is a modified ver-
sion of the original Darknet architecture that incorporates
Cross-Stage Partial connections by splitting feature maps into
separate paths, allowing for more efficient feature extraction
and reduced computational costs. YOLOv5 features a strided
convolution layer with a large window size, aiming to reduce
memory and computational costs, as showcased in Figure 3.
Moreover, this version adopts the Spatial Pyramid Pooling
Fast (SPPF) module to provide a multiscale representation of
the input feature maps. The SPPF module works by pooling
features at different scales and concatenating them, allowing
the network to capture fine and coarse information. This helps
recognize objects of various sizes more effectively. In addition,
YOLOv5 implements several augmentations, such as Mosaic,
copy-paste, random affine, MixUp, HSV augmentation, and
random horizontal flip. YOLOv5 is available in five variants,
varying in width and depth of convolution modules. Ultralytics
is actively improving this model through YOLOv5u, adopting

an anchor-free detection method and achieving better overall
performance, especially on complex objects of different sizes.

Fig. 3. Detailed architecture of YOLOv5 including the CSPDarknet Back-
bone, PANet Neck, and YOLO Layer Head [13].

4) YOLOv8: Ultralytics has introduced YOLOv8, a signif-
icant evolution in the YOLO series, with five scaled versions
[58] [25]. Alongside object detection, YOLOv8 also provides
various applications such as image classification, pose esti-
mation, instance segmentation, and oriented object detection
(OOB). Key features include a backbone similar to YOLOv5,
with adjustments in the CSPLayer, now known as the C2f
module, which combines high-level features with contextual
information for enhanced detection accuracy highlighted in
Figure 4. YOLOv8 also introduces a semantic segmentation
model called YOLOv8-Seg, which combines a CSPDarknet53
feature extractor with a C2F module, achieving state-of-the-
art results in object detection and semantic segmentation
benchmarks while maintaining high efficiency.

Fig. 4. Detailed architecture of YOLOv8 showcasing the backbone network’s
multiple convolutional layers to extract hierarchical features, the Feature
Pyramid Network (FPN) for enhances detection at different scales, and the
network head to perform final predictions, incorporating convolutional blocks
and upsample blocks to refine features [28].

5) YOLOv9: YOLOv9, developed by Chien-Yao Wang, I-
Hau Yeh, and Hong-Yuan Mark Liao, uses the Information
Bottleneck Principle and Reversible Functions to preserve
essential data across the network’s depth, ensuring reliable
gradient generation and improved model convergence and
performance [66]. Reversible functions, which can be in-
verted without loss of information, are another cornerstone



6

of YOLOv9’s architecture. This property allows the network
to retain a complete information flow, enabling more accurate
updates to the model’s parameters. Moreover, YOLOv9 offers
five scaled versions for different uses, focusing on lightweight
models, which are often under-parameterized and prone to
losing significant information during the feedforward process.

Programmable Gradient Information (PGI) is a significant
advancement introduced in YOLOv9. PGI is a method that
dynamically adjusts the gradient information during training
to optimize learning efficiency. By selectively focusing on
the most informative gradients, PGI helps preserve crucial
information that might otherwise be lost in lightweight models.
This advancement ensures the model retains the essential
features for accurate object detection, improving overall per-
formance.

In addition, YOLOv9 incorporates GELAN (Gradient En-
hanced Lightweight Architecture Network), a new architec-
tural advancement designed to improve parameter utiliza-
tion and computational efficiency as illustrated in Figure
5. GELAN achieves this by optimizing the computational
pathways within the network, allowing for better resource
management and adaptability to various applications without
compromising speed or accuracy.

Fig. 5. YOLOv9 architecture featuring CSPNet, ELAN, and GELAN mod-
ules. CSPNet optimizes gradient flow and reduces computational complexity
via feature map partitioning. ELAN enhances learning efficiency by linearly
aggregating features, and GELAN extends this concept by integrating features
from various depths and pathways, offering increased flexibility and accuracy
in feature extraction [66].

6) YOLOv10: YOLOv10, developed by Tsinghua Univer-
sity researchers, builds upon previous models’ strengths with
key innovations [64]. The architecture has an enhanced CSP-
Net (Cross Stage Partial Network) backbone for improved
gradient flow and reduced computational redundancy, as seen
in Figure 6. The network is structured into three main compo-
nents: the backbone, the neck, and the detection head. The
neck includes PAN (Path Aggregation Network) layers for
effective multiscale feature fusion. PAN is designed to enhance
information flow by aggregating features from different layers,
enabling the network to better capture and combine details at
various scales, which is crucial for detecting objects of differ-
ent sizes. At the same time, the One-to-Many Head generates
multiple predictions per object during training to provide rich
supervisory signals and improve learning accuracy. Moreover,
this version also offers five scaled versions, from nano to extra-
large.

For inference, the One-to-One Head generates a single
best prediction per object, eliminating the need for Non-
Maximum Suppression (NMS). By removing the need for
NMS, YOLOv10 reduces latency and improves the post-
processing speed. In addition, YOLOv10 includes NMS-Free
Training, which uses consistent dual assignments to reduce
inference latency, and a model design that optimizes various
components from both efficiency and accuracy perspectives.
This includes lightweight classification heads, spatial-channel
decoupled downsampling, and rank-guided block design. In
addition, the model incorporates large-kernel convolutions and
partial self-attention modules to enhance performance without
significant computational costs.

Fig. 6. YOLOv10 architecture showcasing the dual label assignment strategy
for improving accuracy and the PAN layer for enhancing feature representation
alongside one-to-many head for regression and classification tasks and one-
to-one head for precise localization [64].

7) YOLO11: YOLO11 [26] is the latest innovation in the
YOLO series developed by Ultralytics, building upon the
developments of its predecessors, especially YOLOv8. This
iteration offers five scaled models from nano to extra large,
catering to various applications. Like YOLOv8, YOLO11
includes numerous applications such as object detection, in-
stance segmentation, image classification, pose estimation, and
oriented object detection (OBB).

Key improvements in YOLO11 include the introduction of
the C2PSA (Cross-Stage Partial with Self-Attention) module,
as seen in Figure 7, which combines the benefits of cross-
stage partial networks with self-attention mechanisms. This
enables the model to capture contextual information more
effectively across multiple layers, improving object detection
accuracy, especially for small and colluded objects. Addition-
ally, in YOLO11, the C2f block has been replaced by C3k2,
a custom implementation of the CSP Bottleneck that uses two
convolutions, unlike YOLOv8’s use of one large convolution.
This block uses a smaller kernel, retaining accuracy while
improving efficiency and speed.

C. Hardware and Software Setup

Table III showcases the libraries and packages used through-
out this paper. During this experiment, 23 models were trained
of 5 different YOLO versions found in Table IV. To ensure a
fair comparative analysis, similar hyperparameters were used
throughout the whole experiment on all models found below
in table V. We have used 2 NVIDIA RTX 4090 GPUs for the
training and evaluation, each with 16,384 CUDA cores.

For the traffic signs dataset, undersampling techniques were
applied to ensure a balanced dataset, reducing the number of



7

Fig. 7. YOLO11 architecture showcasing the new C3k2 blocks and the
C2PSA module. [26] [43].

images from 4381 to 3233 images split into 70% training, 20%
validation, and 10% testing. After balancing the dataset, 24
classes remained, with an average of 100 images per class in
the training dataset. This dataset contains numerous images of
traffic sizes of different sizes that render it suitable for diverse
object detection.

The Africa Wildlife dataset contains 1504 images dis-
tributed equally among all 4 classes following the 70% train-
ing, 20% validation, and 10% testing split. This dataset is used
for large object detection in this section,

The Ships dataset contains 13.4k images and is divided into
70% training, 20% validation, and 10% testing. It has only one
class (ship) and is focused on small object detection.

TABLE III
SOFTWARE SETUP

Name Version Description
Python 3.12 Programming language
Ubuntu 22.04 Linux operating system
CUDA 12.5 Platform for GPU based processing
cuDNN 8.9.7 CUDA library for deep neural networks

Ultralytics 8.2.55 YOLO Object Detection Library
WandB 0.17.4 ML experiment tracking

D. Metrics

This study evaluates the performance of YOLO models us-
ing three primary metrics: accuracy, computational efficiency,
and size. The accuracy metrics include Precision, Recall,
mAP50 (Mean Average Precision at an IoU (Intersection over
Union) threshold of 0.50), and mAP50-95 (Mean Average
Precision across IoU (Intersection over Union) thresholds from
0.50 to 0.95). Precision [41] measures the ratio of correctly
predicted observations to the total predicted observations, thus

TABLE IV
YOLO VERSIONS AND SCALED VERSIONS

Version Scaled Version

YOLOv3u YOLOv3u-tiny
YOLOv3u

YOLOv5u

YOLOv5un (nano)
YOLOv5us (small)

YOLOv5um (medium)
YOLOv5ul (large)

YOLOv5ux (extra-large)

YOLOv8

YOLOv8n (nano)
YOLOv8s (small)

YOLOv8m (medium)
YOLOv8l (large)

YOLOv8x (extra-large)

YOLOv9

YOLOv9t (tiny)
YOLOv9s (small)

YOLOv9m (medium)
YOLOv9c (compact)
YOLOv9e (extended)

YOLOv10

YOLOv10n (nano)
YOLOv10s (small)

YOLOv10m (medium)
YOLOv10b (balanced)

YOLOv10l (large)
YOLOv10x (extra-large)

YOLO11

YOLO11n (nano)
YOLO11s (small)

YOLO11m (medium)
YOLO11l (large)

YOLO11x (extra-large)

TABLE V
TABLE OF PARAMETERS

Parameter Value
Epochs 100
Optimizer AdamW
Batch Size 16
Image Size (640, 640)
Initial & Final Learning rate (0.0001, 0.01)
Dropout rate 0.15
Data Split (70, 20, 10)

highlighting the occurrence of False Positives. Conversely, Re-
call [41] measures the ratio of correctly predicted observations
to all actual observations, thus emphasizing the occurrence of
False Negatives. Both mAP50 and mAP50-95 [70] provide
a comprehensive summary of Precision and Recall. While
mAP50 calculates the Mean Average Precision at an IoU
threshold of 0.50, mAP50-95 extends this calculation across
multiple IoU thresholds from 0.50 to 0.95, with a step size of
0.05.

Regarding computational efficiency metrics, Preprocessing
Time, Inference Time, and Postprocessing Time will be uti-
lized to evaluate the model’s speed. Preprocessing Time refers
to the duration taken to prepare raw data for input into the
model. Inference Time is the duration required for the model to
process the input data and generate predictions. Postprocessing
Time denotes the time needed to convert the model’s raw
predictions into a final, usable format. These metrics were
measured using a sample of images for testing after training
the models. Additionally, the GFLOPs (Giga Floating-Point
Operations Per Second) measure the computational power for
the model training, reflecting its efficiency. In contrast, the



8

TABLE VI
EVALUATION RESULTS FOR THE TRAFFIC SIGNS DATASET.

Versions Precision Recall mAP50 mAP50-95 Preprocess
Time

Inference
Time

Postprocess
Time

Total
Time GFLOPs Size

YOLOv3u 0.75 0.849 0.874 0.781 0.7 8.5 0.4 9.6 207.86 282.4
YOLOV3u tiny 0.845 0.667 0.772 0.682 1.4 0.7 0.3 2.4 24.44 19

YOLOv5un 0.805 0.679 0.749 0.665 0.6 6.6 0.4 7.6 5.65 7.1
YOLOv5us 0.85 0.777 0.827 0.744 0.5 7.8 0.4 8.7 18.58 23.9
YOLOv5um 0.849 0.701 0.83 0.744 1.1 9.5 0.4 11 50.54 64.1
YOLOv5ul 0.831 0.836 0.886 0.799 0.6 9.7 0.4 10.7 106.85 134.9
YOLOv5ux 0.863 0.795 0.867 0.777 1.1 9.8 0.4 11.3 195.2 246.3
YOLOv8n 0.749 0.688 0.777 0.689 0.6 6.8 0.4 7.8 6.55 8.1
YOLOv8s 0.766 0.788 0.806 0.718 0.6 7.8 0.4 8.8 22.59 28.6
YOLOv8m 0.838 0.805 0.845 0.763 1.6 9.1 0.4 11.1 52.12 78.9
YOLOv8l 0.771 0.789 0.853 0.767 0.6 9.2 0.4 10.2 87.77 165
YOLOv8x 0.902 0.744 0.874 0.78 0.6 9.4 0.4 10.4 136.9 257.7
YOLOv9t 0.792 0.748 0.812 0.731 0.5 10 0.4 10.9 4.93 7.7
YOLOv9s 0.763 0.81 0.828 0.75 0.6 11.1 0.4 12.1 15.33 26.8
YOLOv9m 0.864 0.796 0.864 0.784 1 12.1 0.4 13.5 40.98 76.7
YOLOv9c 0.827 0.807 0.852 0.769 1.3 11.6 0.4 13.3 51.8 102.6
YOLOv9e 0.819 0.824 0.854 0.764 0.8 16.1 0.4 17.3 117.5 189.4

YOLOv10n 0.722 0.602 0.722 0.64 1 0.8 0.2 2 5.59 8.3
YOLOv10s 0.823 0.742 0.834 0.744 1.2 1.1 0.2 2.5 15.9 24.7
YOLOv10m 0.834 0.843 0.88 0.781 1.2 2.4 0.2 3.8 32.1 63.8
YOLOv10b 0.836 0.764 0.859 0.765 1 3.1 0.2 4.3 39.7 98.4
YOLOv10l 0.873 0.807 0.866 0.771 1.1 3.8 0.2 5.1 50 126.8
YOLOv10x 0.773 0.854 0.88 0.787 1 6.3 0.2 7.5 61.4 170.4
YOLO11n 0.768 0.695 0.757 0.668 1.2 0.6 0.4 2.2 5.35 6.4
YOLO11s 0.819 0.758 0.838 0.742 1.2 1 0.4 2.6 18.4 21.4
YOLO11m 0.898 0.826 0.893 0.795 1.2 2.4 0.4 4 38.8 67.9
YOLO11l 0.862 0.839 0.889 0.794 1.2 3 0.4 4.6 49 86.8
YOLO11x 0.819 0.816 0.885 0.784 0.9 6.1 0.4 7.4 109 194.8

size metric reflects the actual disk size of the model and the
number of its parameters.

These metrics are essential for providing a comprehensive
overview of YOLO models’ performance, allowing for effec-
tive comparison and evaluation. By employing these metrics,
we can thoroughly assess the accuracy and efficiency of
different YOLO model versions, ensuring a robust benchmark
for their performance and application in various real-world
scenarios.

IV. BENCHMARK RESULTS AND DISCUSSION

A. Results

1) Traffic Signs Dataset: Table VI presents a comparative
analysis of the YOLO algorithms’ performance on the Traffic
Signs dataset, evaluated based on accuracy, computational
efficiency, and model size. The Traffic Signs dataset is a
medium-sized dataset with varied object sizes, making it favor-
able for benchmarking. The results highlight the effectiveness
of YOLO models in detecting traffic signs, demonstrating a
range of precision. The highest mAP50-95 was 0.799, while
the lowest recorded precision was 0.64. On the other hand,
the highest mAP50 is 0.893 while the lowest is 0.722. The
substantial gap between the mAP50 and mAP50-95 results
suggests that the models encounter difficulties in uniformly
handling traffic signs with different sizes at higher thresholds,
reflecting areas for potential improvement in their detection
algorithms.

a) Accuracy:: As illustrated in Figure 8, YOLOv5ul
demonstrates the highest accuracy, achieving a mAP50 of
0.866 and a mAP50-95 of 0.799. This is followed by

YOLO11m with a mAP50-95 of 0.795 and YOLO11l with
a mAP50-95 of 0.794. In contrast, YOLOv10n exhibits the
lowest precision, with a mAP50 of 0.722 and a mAP50-95
of 0.64, closely followed by YOLOv5un with a mAP50-95 of
0.665, as evidenced by the data points in Figure 8.

b) Precision and Recall: : Figure 9 elucidates the trade-
off between precision and recall taking the size of the models
into consideration. Models such as YOLO11m, YOLO10l,
YOLOv9m, YOLOv5ux, and YOLO11l exhibit high precision
and recall, specifically with YOLO11m achieving a precision
of 0.898 and a recall of 0.826 while having a size of 67.9Mb,
and YOLOv10l achieving a precision of 0.873 and a recall
of 0.807 with a significantly bigger size (126.8 Mb). In
contrast, smaller models such as YOLOv10n (precision 0.722,
recall 0.602), YOLOv8n (precision 0.749, recall 0.688), and
YOLO11n (precision 0.768, recall 0.695) underperform in
both metrics. This underscores the superior performance of
larger models on the Traffic Signs dataset. Moreover, the
high precision (0.849) and low recall (0.701) of YOLOv5um
indicate a propensity for false negatives, while YOLOv3u’s
high recall (0.849) and low precision (0.75) suggest a tendency
for false positives.

c) Computational Efficiency:: In terms of computational
efficiency, YOLOv10n is the most efficient, with a processing
time of 2ms per image and a GFLOPs count of 8.3, as
shown in Figures 10 and 11. YOLO11n closely trails this
at 2.2ms with a 6.4 GFLOPs count, and YOLOv3u-tiny
with a processing time of 2.4ms and a GFLOPs count of
19, making it relatively computationally inefficient compared
to the other fast models. However, the data indicates that
YOLOv9e, YOLOv9m, YOLOv9c, and YOLOv9s are the least



9

Fig. 8. mAP50 and mAP50-95 YOLO results on traffic signs dataset. Each model is represented by two bars: the left bar shows the mAP50 score, while the
right bar represents the mAP50-95 score.

Fig. 9. Precision vs. Recall based on size results on traffic signs dataset. The size of each circle represents the size of the model, with larger circles indicating
larger models.

efficient, with inference times of 16.1ms, 12.1ms, 11.6ms, and
11.1ms, and GFLOPs count of 189.4, 76.7, 102.6, and 26.8
respectively. These findings delineate a clear trade-off between
accuracy and computational efficiency.

d) Overall Performance:: When evaluating overall per-
formance, which includes accuracy, size, and model efficiency,
YOLO11m emerges as a consistently top-performing model. It
achieves a mAP50-95 of 0.795, an inference time of 2.4ms, a
model size of 38.8Mb, and a 67.9 GFLOPs count, as detailed
in Figures 8, 10, 11, and Table VI. This is followed by
YOLO11l (mAP50-95 of 0.794, inference time of 4.6ms, size

of 49Mb, and 86.8 GFLOPs count), and YOLOv10m (mAP50-
95 of 0.781, inference time of 2.4ms, size of 32.1Mb, 63.8
GFLOPs count). These results highlight the robustness of these
models in detecting traffic signs of various sizes while main-
taining short inference times and small model sizes. Notably,
the YOLO11 and YOLOv10 families significantly outperform
other YOLO families, in terms of accuracy and computational
efficiency in this dataset, as their models consistently surpass
counterparts from other families.

2) Africa Wildlife Dataset: The results in Table VII show-
case the performance of the YOLO models on the Africa



10

Fig. 10. Total processing time results on traffic signs dataset. Each bar represents the total processing time, divided into three sections: Preprocessing Time
(bottom), Inference Time (middle), and Postprocessing Time (top).

Fig. 11. Total processing time and GFLOPs count results on traffic signs dataset.

Wildlife dataset. This dataset contains large object sizes fo-
cusing on the ability of YOLO models to predict large objects
and their risk of overfitting due to the size of the dataset. The
models demonstrate robust accuracy across the board, with
the highest-performing models achieving a mAP50-95 ranging
from 0.832 to 0.725. This relatively shorter range reflects the
effectiveness of the models in detecting and classifying large
wildlife objects by maintaining high accuracy.

a) Accuracy:: As illustrated in Figure 12, YOLOv9s
demonstrates exceptional performance with a high mAP50-95
of 0.832 and a mAP50 of 0.956, showcasing its robust accu-
racy across various IoU thresholds. YOLOv9c and YOLOv9t
follow closely, with mAP50 scores of 0.96 and 0.948 and

mAP50-95 scores of 0.83 and 0.825, respectively. These
results highlight the YOLOv9 family’s ability to effectively
learn patterns from a small sample of images, making it par-
ticularly suited for smaller datasets. In contrast, YOLOv5un,
YOLOv10n, and YOLOv3u-tiny show lower mAP50-95 scores
of 0.791, 0.786, and 0.725, indicating their limitations in accu-
racy. The underperformance of larger models like YOLO11x,
YOLOv5ux, YOLOv5ul, and YOLOv10l can be attributed to
overfitting, especially given the small dataset size.

b) Precision and Recall:: Figure 13 reveals that
YOLO8l and YOLO11l achieve the highest precision and
recall, with values of 0.942 and 0.937 for precision, and 0.898
and 0.896 for recall, respectively. Notably, YOLOv8n achieves



11

TABLE VII
EVALUATION RESULTS FOR THE AFRICA WILDLIFE DATASET.

Versions Precision Recall mAP50 mAP50-95 Preprocess
Time

Inference
Time

Postprocess
Time Total Time Size GFLOPs

YOLOv3u 0.91 0.88 0.943 0.803 0.5 6.2 0.4 7.1 207.86 282.2
YOLOV3u tiny 0.897 0.866 0.921 0.725 0.7 0.7 0.4 1.8 24.44 19.1

YOLOv5un 0.949 0.862 0.948 0.791 1.1 0.5 0.4 2 5.65 7
YOLOv5us 0.924 0.882 0.853 0.804 1 0.8 0.4 2.2 18.58 23.8
YOLOv5um 0.935 0.887 0.947 0.807 0.6 2.1 0.4 3.1 50.54 64
YOLOv5ul 0.916 0.881 0.948 0.797 0.7 3.3 0.4 4.4 106.85 135
YOLOv5ux 0.932 0.867 0.946 0.797 0.5 6.6 0.4 7.5 195.2 246.2
YOLOv8n 0.932 0.908 0.953 0.794 1.1 0.5 0.4 2 6.55 8.2
YOLOv8s 0.962 0.88 0.943 0.812 0.9 1 0.4 2.3 22.59 28.7
YOLOv8m 0.928 0.909 0.953 0.822 0.8 2.5 0.4 3.7 52.12 78.9
YOLOv8l 0.942 0.898 0.957 0.817 0.9 3.9 0.4 5.2 87.77 165.1
YOLOv8x 0.912 0.906 0.953 0.819 0.5 7.1 0.4 8 136.9 257.6
YOLOv9t 0.944 0.875 0.948 0.825 1.3 1.1 0.4 2.8 4.93 7.7
YOLOv9s 0.921 0.897 0.956 0.832 1 1.2 0.4 2.6 15.33 26.9
YOLOv9m 0.924 0.901 0.952 0.823 0.9 2.8 0.4 4.1 40.98 76.5
YOLOv9c 0.934 0.897 0.96 0.83 0.9 3.4 0.4 4.7 51.8 102.7
YOLOv9e 0.932 0.864 0.944 0.809 0.5 7.6 0.4 8.5 117.5 189.3

YOLOv10n 0.901 0.9 0.936 0.786 1.1 0.7 0.2 2 5.59 8.2
YOLOv10s 0.929 0.888 0.947 0.799 0.9 1.1 0.2 2.2 15.9 24.5
YOLOv10m 0.91 0.88 0.945 0.8 1 2.4 0.2 3.6 32.1 63.4
YOLOv10b 0.905 0.899 0.944 0.809 0.8 3.2 0.2 4.2 39.7 98
YOLOv10l 0.922 0.894 0.944 0.8 0.7 3.8 0.2 4.7 50 126.3
YOLOv10x 0.96 0.862 0.949 0.819 0.8 6.3 0.2 7.3 61.4 169.8
YOLO11n 0.964 0.877 0.964 0.802 1.1 0.7 0.4 2.2 5.35 6.3
YOLO11s 0.952 0.892 0.959 0.8 1.1 1 0.4 2.5 18.4 21.3
YOLO11m 0.922 0.906 0.96 0.81 0.9 2.4 0.4 3.7 38.8 67.7
YOLO11l 0.937 0.896 0.965 0.805 0.9 3 0.4 4.3 49 86.6
YOLO11x 0.908 0.886 0.945 0.795 0.6 6.1 0.4 7.1 109 194.4

Fig. 12. mAP50 and mAP50-95 YOLO results on Africa wildlife dataset. Each model is represented by two bars: the left bar shows the mAP50 score, while
the right bar represents the mAP50-95 score.



12

Fig. 13. Precision vs. Recall based on size results on Africa wildlife dataset. The size of each circle represents the size of the model, with larger circles
indicating larger models.

Fig. 14. Total processing time results on Africa wildlife dataset. Each bar represents the total processing time, divided into three sections: Preprocessing
Time (bottom), Inference Time (middle), and Postprocessing Time (top).

similar results (0.932 for precision, 0.908 for recall) with
a compact size of 6.55Mb, demonstrating its efficiency. In
contrast, YOLOv3u and YOLOv5ul exhibit lower precision
and recall scores (0.91 and 0.88 for YOLOv3u, 0.916 and
0.881 for YOLOv5ul), despite their larger sizes (204.86Mb
for YOLOv3u, 106.85Mb for YOLOv5ul), which may be
attributed to overfitting issues.

c) Computational Efficiency:: YOLOv10n, YOLOv8n,
and YOLOv3u-tiny are the fastest models, achieving pro-
cessing times of 2ms and 1.8ms, with GFLOPs counts of
8.2 and 19.1, respectively. The first two models share the
same processing speed and GFLOPs count, as showcased in

Figures 14 and 15. Conversely, YOLOv9e exhibits the slowest
processing time at 11.2ms and a GFLOPs count of 189.3,
followed by YOLOv5ux at 7.5ms and 246.2 GFLOPs count.
These results indicate that larger models tend to require more
processing time and hardware usage compared to smaller
models, emphasizing the trade-off between model size and
processing efficiency.

d) Overall Performance:: YOLOv9t and YOLOv9s con-
sistently excel across all metrics, delivering high accuracy
while maintaining small model sizes, low GFLOPs, and short
inference times, as shown in Table VII, and Figures 13, 14, and
15. This demonstrates the robustness of YOLOv9’s smaller



13

Fig. 15. Total processing time and GFLOPs count results on Africa wildlife dataset.

models and their effectiveness on small datasets. In contrast,
YOLO5ux and YOLO11x show suboptimal accuracy despite
their larger sizes and longer inference times, likely due to
overfitting. Most large models underperformed on this dataset,
with the exception of YOLOv10x, which benefited from a
modern architecture that prevents overfitting.

3) Ships and Vessels Dataset: Table VIII presents the per-
formance of YOLO models on the Ships and Vessels dataset,
a large dataset featuring tiny objects with varying rotations.
Overall, the models demonstrated moderate effectiveness in
detecting ships and vessels, with mAP50-95 ranging from
0.273 to 0.327. This performance suggests that YOLO al-
gorithms may face challenges in accurately detecting smaller
objects, and the dataset’s diversity in object sizes and rotations
provides a comprehensive test of the models’ capabilities in
these conditions.

a) Accuracy: : The disparity between mAP50-95 and
mAP50, illustrated in Figure 16, underscores the challenges
YOLO models face with higher IoU thresholds when de-
tecting small objects. Additionally, YOLO models strug-
gle with detecting objects of varying rotations. Among the
models, YOLO11x achieved the highest accuracy, with a
mAP50 of 0.529 and a mAP50-95 of 0.327, closely followed
by YOLO11l, YOLO11m, and YOLO11s, which recorded
mAP50 values of 0.529, 0.528, and 0.53, and mAP50-95
values of 0.327, 0.325, and 0.325, respectively. These results
highlight the robustness of the YOLO11 family in detecting
small and tiny objects. In contrast, YOLOv3u-tiny, YOLOv8n,
YOLOv3u, and YOLOv5n exhibited the lowest accuracy, with
mAP50 scores of 0.489, 0.515, 0.519, and 0.514, and mAP50-
95 scores of 0.273, 0.297, 0.298, and 0.298, respectively.
This suggests the outdated architecture of YOLOv3u and the
potential underfitting of smaller models due to the large dataset
size.

b) Precision and Recall: : Figure 17 indicates that
YOLOv5ux outperformed other models, achieving a precision

of 0.668 and a recall of 0.555. It was closely followed
by YOLOv9m (precision of 0.668, recall of 0.551) and
YOLOv8m (precision of 0.669, recall of 0.525), both of which
are significantly smaller in size (40.98 Mb for YOLOv9m
and 52.12 Mb for YOLOv8m). In contrast, YOLO11n and
YOLOv10s exhibited lower performance, with precisions of
0.574 and 0.586 and recalls of 0.51 and 0.511, respectively,
likely due to underfitting issues. Generally, YOLO11 models
tended to produce false positives, reflected in their low preci-
sion and high recall. Meanwhile, YOLOv10 underperformed
in both precision and recall, despite being one of the newest
models in the YOLO family.

c) Computational Efficiency:: As illustrated in Figures
18 and 19, YOLOv3u-tiny achieved the fastest processing
time at 2 ms, closely followed by YOLOv8n and YOLOv5un,
both recording 2.3 ms. YOLOv10 and YOLO11 models also
excelled in speed, with YOLOv10n and YOLO11n achieving
rapid inference times of 2.4 ms and 2.5 ms, along with
GFLOPs counts of 8.2 and 6.3, respectively. In contrast,
YOLOv9e exhibited the slowest speed, with an inference time
of 7.6 ms and a GFLOPs count of 189.3, highlighting the
trade-off between accuracy and efficiency within the YOLOv9
family.

d) Overall Performance:: The results in Table VIII
and Figures 16, 17, and 18 demonstrate that YOLO11s and
YOLOv10s excelled in accuracy while maintaining compact
sizes, low GFLOPs, and quick processing times. In contrast,
YOLOv3u, YOLOv8x, and YOLOv8l fell short of expecta-
tions despite their larger sizes and longer processing times.
These findings highlight the robustness and reliability of the
YOLO11 family, particularly in improving the YOLO family’s
performance in detecting small and tiny objects while ensur-
ing efficient processing. Additionally, the results reveal the
underperformance of YOLOv9 models when faced with large
datasets and small objects, despite their modern architecture.



14

TABLE VIII
EVALUATION RESULTS FOR THE SHIPS AND VESSELS DATASET.

Versions Precision Recall mAP50 mAP50-95 Preprocess
Time

Inference
Time

Postprocess
Time

Total
Time Size GFLOPs

YOLOv3u 0.679 0.534 0.519 0.298 0.8 6.2 0.3 7.3 207.86 282.5
YOLOV3u tiny 0.647 0.511 0.489 0.273 1 0.7 0.3 2 24.44 18.9

YOLOv5un 0.635 0.532 0.514 0.298 1.5 0.6 0.3 2.4 5.65 7.2
YOLOv5us 0.653 0.541 0.518 0.299 1.2 0.8 0.3 2.3 18.58 24
YOLOv5um 0.667 0.541 0.526 0.308 0.9 2.1 0.3 3.3 50.54 64
YOLOv5ul 0.654 0.545 0.525 0.305 0.9 3.3 0.3 4.5 106.85 134.8
YOLOv5ux 0.668 0.555 0.531 0.309 0.8 6.7 0.3 7.8 195.2 246.2
YOLOv8n 0.655 0.533 0.515 0.297 1.5 0.5 0.3 2.3 6.55 8
YOLOv8s 0.647 0.545 0.518 0.301 1.1 1 0.3 2.4 22.59 28.5
YOLOv8m 0.669 0.547 0.525 0.302 0.8 2.5 0.3 3.6 52.12 79
YOLOv8l 0.659 0.551 0.526 0.303 0.9 3.9 0.3 5.1 87.77 165
YOLOv8x 0.655 0.55 0.529 0.306 0.8 7.1 0.3 8.2 136.9 257.7
YOLOv9t 0.647 0.516 0.512 0.3 1.4 1.1 0.3 2.8 4.93 7.5
YOLOv9s 0.655 0.552 0.522 0.308 1.4 1.2 0.3 2.9 15.33 26.9
YOLOv9m 0.668 0.551 0.529 0.307 1.1 2.7 0.3 4.1 40.98 76.8
YOLOv9c 0.663 0.547 0.523 0.303 1.2 3.4 0.3 4.9 51.8 102.4
YOLOv9e 0.667 0.537 0.524 0.308 1.1 7.6 0.3 9 117.5 189.5

YOLOv10n 0.584 0.487 0.506 0.31 1.4 0.8 0.2 2.4 5.59 8.2
YOLOv10s 0.586 0.511 0.515 0.319 1.1 1.1 0.2 2.4 15.9 24.4
YOLOv10m 0.588 0.517 0.522 0.322 1 2.4 0.1 3.5 32.1 63.4
YOLOv10b 0.603 0.509 0.523 0.319 1.1 3.2 0.1 4.4 39.7 97.9
YOLOv10l 0.601 0.511 0.522 0.322 1.1 3.8 0.1 5 50 126.3
YOLOv10x 0.6 0.523 0.526 0.321 1 6.3 0.2 7.5 61.4 169.8
YOLO11n 0.574 0.51 0.505 0.311 1.5 0.7 0.3 2.5 5.35 6.3
YOLO11s 0.585 0.535 0.521 0.323 1.3 1 0.3 2.6 18.4 21.3
YOLO11m 0.588 0.541 0.53 0.325 1 2.4 0.3 3.7 38.8 67.6
YOLO11l 0.596 0.531 0.528 0.325 1.1 3 0.4 4.5 49 86.6
YOLO11x 0.596 0.538 0.529 0.327 0.8 6.1 0.3 7.2 109 194.4

Fig. 16. mAP50 and mAP50-95 YOLO results on ships and vessel dataset. Each model is represented by two bars: the left bar shows the mAP50 score,
while the right bar represents the mAP50-95 score.



15

Fig. 17. Precision vs. Recall based on size results on ships and vessels dataset. The size of each circle represents the size of the model, with larger circles
indicating larger models.

Fig. 18. Total processing time results on ships and vessels dataset. Each bar represents the total processing time, divided into three sections: Preprocessing
Time (bottom), Inference Time (middle), and Postprocessing Time (top).



16

Fig. 19. Total processing time and GFLOPs count results on ships and vessels dataset.

B. Discussion

Based on the performance of the models across the three
datasets, we ranked them by accuracy, speed, GFLOps count,
and size, as shown in Table IX to facilitate a comprehensive
evaluation. For accuracy, the mAP50-95 metric was employed
due to its capacity to assess models across a range of IoU
thresholds, thus providing a detailed insight into each model’s
performance. For speed, models were sorted based on the total
processing time, which encompasses preprocessing, inference,
and postprocessing durations. The rankings range from Rank
1, indicating the highest performance, to Rank 28, denoting
the lowest, with the respective rankings highlighted in bold
within the table.

The analysis of Table IX yields several critical observations:
1) Accuracy: YOLO11m consistently emerged as a top per-

former, frequently ranking among the highest, closely followed
by YOLOv10x, YOLO11l, YOLOv9m, and YOLO11x. This
underscores the robust performance of the YOLO11 family
across varying IoU thresholds and object sizes, which can
be attributed to their use of C2PSA for the preservation of
contextual information, leading to improved convergence and
overall performance. In addition, the implementation of large-
kernel convolutions and partial self-attention modules helped
increase the performance of the algorithm.

Conversely, YOLOv3u-tiny exhibited the lowest accuracy,
particularly in the Africa Wildlife and Ships and Vessels
datasets, with YOLOv5un and YOLOv8n showing slightly bet-
ter but still sub-par results. This suggests that YOLO11 models
are currently the most reliable for applications demanding high
accuracy.

Closely following the performance of the YOLO11 family,
the YOLOv9 models demonstrate their effectiveness in detect-
ing objects across various sizes and different IoU thresholds.
However, they may struggle with small objects, as seen in
the Ships and Vessels dataset. In contrast, the YOLOv10

TABLE IX
OVERALL RANKING OF YOLO ALGORITHMS

Version Accuracy
Rank

Speed
Rank

GFLOPs
Rank

Size
Rank

YOLOv3u-tiny 28 1 6 11
YOLOv3u 20 24 28 28
YOLOv5un 27 6 2 4
YOLOv5us 24 7 8 9
YOLOv5um 17 15 13 18
YOLOv5ul 14 19 21 23
YOLOv5ux 17 27 26 27
YOLOv8n 26 5 4 5
YOLOv8s 23 9 11 10
YOLOv8m 15 17 16 20
YOLOv8l 13 22 22 22
YOLOv8x 8 26 27 26
YOLOv9t 20 12 3 1
YOLOv9s 7 15 10 6
YOLOv9m 4 21 15 15
YOLOv9c 9 25 19 19
YOLOv9e 12 28 24 25

YOLOv10n 25 2 5 3
YOLOv10s 19 3 9 7
YOLOv10m 5 10 12 12
YOLOv10b 9 12 18 14
YOLOv10l 11 17 20 17
YOLOv10x 2 22 23 21
YOLO11n 22 3 1 2
YOLO11s 16 8 7 8
YOLO11m 1 11 14 13
YOLO11l 3 14 17 16
YOLO11x 5 19 25 24

family, despite its later introduction, exhibited relatively lower
accuracy in the Traffic Signs and Africa Animals datasets,
resulting in an average accuracy drop of 2.075% compared
to the YOLOv9 models in those datasets. The slight under-
performance of YOLOv10 can be attributed to its adoption
of the One-to-One Head approach instead of Non-Maximum
Suppression (NMS) for defining bounding boxes. This strategy
can struggle to capture objects effectively, particularly when
dealing with overlapping items, as it relies on a single pre-



17

diction per object. This limitation helps explain the relatively
subpar results observed in the second dataset.

Similarly, the outdated architecture of YOLOv3u con-
tributed to its inferior performance, averaging 6.5% lower
accuracy than the YOLO11 models. This decline can be
traced back to its reliance on the older Darknet-53 framework,
first introduced in 2018, which may not adequately address
contemporary detection challenges.

2) Computational Efficiency: YOLOv10n consistently out-
performed other models in terms of speed and GFLOPs count,
ranking among the top across all three datasets in terms
of speed and 5th in terms of GFLOPs count. YOLOv3u-
tiny, YOLOv10s, and YOLO11n also demonstrated notable
computational efficiency.

YOLOv9e exhibited the slowest inference times and a
very high GFLOPs count across the datasets, illustrating the
trade-off between accuracy and efficiency. YOLO11’s speed
improvements, attributable to their use of the C3k2 block,
make it suitable for applications where rapid processing is
essential, surpassing YOLOv10 and YOLOv9 models, in terms
of speed by %1.41 and %31 on average, respectively.

While YOLOv9 models excelled in accuracy, their inference
times were among the slowest, making them less ideal for
time-sensitive applications. In contrast, YOLOv10 models,
though slightly slower than the YOLO11 variants, still offer
a commendable balance between efficiency and speed. Their
performance is well-suited for time-sensitive scenarios, provid-
ing rapid processing without significantly sacrificing accuracy,
making them a viable option for real-time applications.

3) Model Size: YOLOv9t was the smallest model, ranking
first across all three datasets, followed by YOLO11n and
YOLOv10n. This efficiency in model size underscores the
advancements in newer YOLO versions, especially YOLOv10,
showcasing the effectiveness of implementing the Spatial-
Channel Decoupled Downsampling for efficient parameter
utilization.

YOLOv3u was the largest model, highlighting its ineffi-
ciency compared to its more modern counterparts due to its
outdated architecture.

4) Overall Performance: Considering accuracy, speed,
size, and GFLOPs, YOLO11m, YOLOv11n, YOLO11s, and
YOLOv10s emerged as the most consistent performers. They
achieved high accuracy, low processing time and power, and
efficient disk usage, making them suitable for a wide range of
applications where both speed and accuracy are crucial.

Conversely, YOLOv9e, YOLOv5ux, and YOLOv3u demon-
strated poor results across all metrics, being computation-
ally inefficient and underperforming relative to their sizes.
YOLO11 models showed the best overall performance, likely
due to recent enhancements such as the C3k2 block and
C2PSA module. Following closely, YOLOv10 models, despite
slightly underperforming in accuracy excelled in efficiency
thanks to its use of implementation of One-to-One head for
prediction. While YOLOv9 showed underperformance in com-
putational efficiency, it remains competitive with YOLOv10
and YOLO11 in terms of accuracy, thanks to its PGI in-

tegration. This positions YOLOv9 as a viable choice for
applications where precision is prioritized over speed.

In addition, YOLOv8 and YOLOv5u exhibited competitive
results, surpassing YOLOv3u in accuracy, which is likely due
to YOLOv3u’s older architecture. However, their accuracy still
fell significantly short compared to the newer models, such
as YOLOv9, YOLOv10, and YOLO11. While YOLOv8 and
YOLOv5u had faster processing times than YOLOv9, their
overall performance remains inferior to that of the newer
models.

5) Object Size and Rotation Detection: The YOLO algo-
rithm is effective in detecting large and medium-sized objects,
as evidenced by high accuracy in the Africa Wildlife and
Traffic Signs datasets. However, it struggles with small object
detection, probably due to its division of images into grids,
making identifying small, low-resolution objects challenging.
Adding to that, YOLO faces challenges when handling objects
of different rotations due to the inability to enclose rotated
objects, leading to sub-par results overall.

To handle rotated objects, models such as YOLO11 OBB
[26] and YOLOv8 OBB [25] (Oriented Bounding Box) can
be implemented. Keeping the same foundational architecture
as the standard YOLOv8 and YOLO11, YOLOv8 OBB and
YOLO11 OBB replace the standard bounding box prediction
head with one that predicts the four corner points of a
rotated rectangle, allowing for more accurate localization and
representation of arbitrarily oriented objects.

6) The Rise of YOLO11 Over YOLOv8: Although YOLOv8
[25] has been the algorithm of choice for its versatility in tasks
such as pose estimation, instance segmentation, and oriented
object detection (OBB), YOLO11 [26] has now emerged as
a more efficient and accurate alternative. With its ability to
handle the same tasks while offering improved contextual
understanding and better architectural modules, YOLO11 sets
a new standard in performance, surpassing YOLOv8 in both
speed and accuracy across various applications.

7) Dataset Size: The size of the dataset significantly influ-
ences the performance of YOLO models. For instance, large
models did not perform optimally on the small African wildlife
dataset compared to their results on the Traffic Signs and Ships
and Vessels datasets due to being more prone to overfitting.
Conversely, small models such as YOLOv9t and YOLOv9s
performed significantly better on the Africa Wildlife dataset
compared to their results on the other datasets, showcasing the
effectiveness of small-scaled models when handling limited
datasets.

8) Impact of Training Datasets: The performance of YOLO
models is influenced by the training datasets used, as shown
in Tables VI, VII, and VIII. Different datasets yield varying
results and top performers, indicating that dataset complexity
affects algorithm performance. This underscores the impor-
tance of using diverse datasets during benchmarking to obtain
comprehensive results on the strengths and limitations of each
model.

This discussion highlights the need for a balanced consid-
eration of accuracy, speed, and model size when selecting
YOLO models for specific applications. The consistent perfor-



18

mance of YOLO11 models across various metrics makes them
highly recommended for versatile situations where accuracy
and speed are essential. Meanwhile, YOLOv10 models can
perform similarly while achieving faster processing times
and with smaller model sizes. Additionally, YOLOv9 can
deliver comparable results in terms of accuracy but sacrifices
speed, making it suitable for applications where precision is
prioritized over rapid processing.

V. CONCLUSION

This benchmark study thoroughly evaluates the performance
of various YOLO algorithms. It pioneers a comprehensive
comparison of YOLO11 against its predecessors, evaluating
their performance across three diverse datasets: Traffic Signs,
African Wildlife, and Ships and Vessels. The datasets were
carefully selected to encompass a wide range of object prop-
erties, including varying object sizes, aspect ratios, and object
densities. We showcase the strengths and weaknesses of each
YOLO version and family by examining a wide range of
metrics such as Precision, Recall, Mean Average Precision
(mAP), Processing Time, GFLOPs count, and Model Size. Our
study addresses the following key research questions:

• Which YOLO algorithm demonstrates superior perfor-
mance across a comprehensive set of metrics?

• How do different YOLO versions perform on datasets
with diverse object characteristics, such as size, aspect
ratio, and density?

• What are the specific strengths and limitations of each
YOLO version, and how can these insights inform the
selection of the most suitable algorithm for various ap-
plications?

In particular, the YOLO11 family emerged as the most
consistent, with YOLO11m striking an optimal balance be-
tween accuracy, efficiency, and model size. While YOLOv10
delivered slightly lower accuracy than YOLO11, it excelled
in speed and efficiency, making it a strong choice for appli-
cations requiring efficiency and fast processing. Additionally,
YOLOv9 performed well overall and particularly stood out
in smaller datasets. These findings provide valuable insights
for industry and academia, guiding the selection of the most
suitable YOLO algorithms and informing future developments
and enhancements. While the evaluated algorithms demon-
strate promising performance, there is still room for refine-
ment. Future research could focus on optimizing YOLOv10 to
enhance its accuracy while preserving its speed and efficiency
advantage. Additionally, continued advancements in architec-
tural design may pave the way for even more groundbreaking
YOLO algorithms. Our future work includes in-depth studies
of the identified gaps in these algorithms, along with proposed
improvements to demonstrate their potential impact on overall
efficiency.

REFERENCES

[1] Oluibukun Ajayi, John Ashi, and BLESSED Guda. Performance
evaluation yolo v5 model for automatic crop and weed classification
on uav images. Smart Agricultural Technology, 5:100231, 04 2023.

[2] Bader Aldughayfiq, Farzeen Ashfaq, NZ Jhanjhi, and Mamoona Hu-
mayun. Yolo-based deep learning model for pressure ulcer detection
and classification. In Healthcare, volume 11, page 1222. MDPI, 2023.

[3] Alaa Ali and Magdy A Bayoumi. Towards real-time dpm object detector
for driver assistance. In 2016 IEEE International Conference on Image
Processing (ICIP), pages 3842–3846. IEEE, 2016.

[4] Isaiah Francis E Babila, Shawn Anthonie E Villasor, and Jennifer C Dela
Cruz. Object detection for inventory stock counting using yolov5.
In 2022 IEEE 18th International Colloquium on Signal Processing &
Applications (CSPA), pages 304–309. IEEE, 2022.

[5] Chetan Badgujar, Daniel Flippo, Sujith Gunturu, and Carolyn Baldwin.
Tree trunk detection of eastern red cedar in rangeland environment with
deep learning technique. Croatian Journal of Forest Engineering, 44,
06 2023.

[6] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.
Yolov4: Optimal speed and accuracy of object detection. arXiv preprint
arXiv:2004.10934, 2020.

[7] Yining Cao, Chao Li, Yakun Peng, and Huiying Ru. Mcs-yolo:
A multiscale object detection method for autonomous driving road
environment recognition. IEEE Access, 11:22342–22354, 2023.

[8] Libo Cheng, Jia Li, Ping Duan, and Mingguo Wang. A small attentional
yolo model for landslide detection from satellite remote sensing images.
Landslides, 18(8):2751–2765, 2021.

[9] Yuan Dai, Weiming Liu, Haiyu Li, and Lan Liu. Efficient foreign object
detection between psds and metro doors via deep neural networks. IEEE
Access, PP:1–1, 03 2020.

[10] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), volume 1, pages 886–893
vol. 1, 2005.

[11] Sheshang Degadwala, Dhairya Vyas, Utsho Chakraborty, Abu Raihan
Dider, and Haimanti Biswas. Yolo-v4 deep learning model for medical
face mask detection. In 2021 International Conference on Artificial
Intelligence and Smart Systems (ICAIS), pages 209–213. IEEE, 2021.

[12] Tausif Diwan, G Anirudh, and Jitendra V Tembhurne. Object detection
using yolo: Challenges, architectural successors, datasets and applica-
tions. multimedia Tools and Applications, 82(6):9243–9275, 2023.

[13] Yunus Egi, Mortaza Hajyzadeh, and Engin Eyceyurt. Drone-computer
communication based tomato generative organ counting model using
yolo v5 and deep-sort. Agriculture, 12:1290, 08 2022.

[14] Loddo Fabio, Dario Piga, Michelucci Umberto, and El Ghazouali
Safouane. Benchcloudvision: A benchmark analysis of deep learning
approaches for cloud detection and segmentation in remote sensing
imagery. arXiv preprint arXiv:2402.13918, 2024.

[15] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva
Ramanan. Object detection with discriminatively trained part-based
models. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 32(9):1627–1645, 2010.

[16] Di Feng, Ali Harakeh, Steven L Waslander, and Klaus Dietmayer.
A review and comparative study on probabilistic object detection in
autonomous driving. IEEE Transactions on Intelligent Transportation
Systems, 23(8):9961–9980, 2021.

[17] Rongli Gai, Na Chen, and Hai Yuan. A detection algorithm for cherry
fruits based on the improved yolo-v4 model. Neural Computing and
Applications, 35(19):13895–13906, 2023.

[18] Dweepna Garg, Parth Goel, Sharnil Pandya, Amit Ganatra, and Ketan
Kotecha. A deep learning approach for face detection using yolo. In
2018 IEEE Punecon, pages 1–4. IEEE, 2018.

[19] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmen-
tation, 2014.

[20] Juan Guerrero-Ibáñez, Sherali Zeadally, and Juan Contreras-Castillo.
Sensor technologies for intelligent transportation systems. Sensors,
18(4), 2018.

[21] Muhammad Hussain. Yolo-v1 to yolo-v8, the rise of yolo and its
complementary nature toward digital manufacturing and industrial defect
detection. Machines, 11(7):677, 2023.

[22] Muhammad Hussain. Yolov1 to v8: Unveiling each variant–a compre-
hensive review of yolo. IEEE Access, 12:42816–42833, 2024.

[23] Rasheed Hussain and Sherali Zeadally. Autonomous cars: Research
results, issues, and future challenges. IEEE Communications Surveys &
Tutorials, 21(2):1275–1313, 2019.

[24] Glenn Jocher. Ultralytics yolov5, 2020.
[25] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics yolov8, 2023.
[26] Glenn Jocher and Jing Qiu. Ultralytics yolo11, 2024.
[27] Chang Ho Kang and Sun Young Kim. Real-time object detection and

segmentation technology: an analysis of the yolo algorithm. JMST
Advances, 5(2):69–76, 2023.



19

[28] Nyoman Karna, Made Adi Paramartha Putra, Syifa Rachmawati, Mideth
Abisado, and Gabriel Sampedro. Toward accurate fused deposition
modeling 3d printer fault detection using improved yolov8 with hy-
perparameter optimization. IEEE Access, PP:1–1, 01 2023.

[29] Chuyi Li, Lulu Li, Hongliang Jiang, Kaiheng Weng, Yifei Geng, Liang
Li, Zaidan Ke, Qingyuan Li, Meng Cheng, Weiqiang Nie, et al. Yolov6:
A single-stage object detection framework for industrial applications.
arXiv preprint arXiv:2209.02976, 2022.

[30] Guofa Li, Zefeng Ji, Xingda Qu, Rui Zhou, and Dongpu Cao. Cross-
domain object detection for autonomous driving: A stepwise domain
adaptative yolo approach. IEEE Transactions on Intelligent Vehicles,
7(3):603–615, 2022.

[31] Min Li, Zhijie Zhang, Liping Lei, Xiaofan Wang, and Xudong Guo.
Agricultural greenhouses detection in high-resolution satellite images
based on convolutional neural networks: Comparison of faster r-cnn,
yolo v3 and ssd. Sensors, 20(17):4938, 2020.

[32] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
Focal loss for dense object detection, 2018.

[33] Martina Lippi, Niccolò Bonucci, Renzo Fabrizio Carpio, Mario Con-
tarini, Stefano Speranza, and Andrea Gasparri. A yolo-based pest
detection system for precision agriculture. In 2021 29th Mediterranean
Conference on Control and Automation (MED), pages 342–347. IEEE,
2021.

[34] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xin-
wang Liu, and Matti Pietikäinen. Deep learning for generic object
detection: A survey. International journal of computer vision, 128:261–
318, 2020.

[35] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: Single Shot
MultiBox Detector, page 21–37. Springer International Publishing, 2016.

[36] Jueal Mia, Hasan Imam Bijoy, Shoreef Uddin, and Dewan Mamun Raza.
Real-time herb leaves localization and classification using yolo. In
2021 12th International Conference on Computing Communication and
Networking Technologies (ICCCNT), pages 1–7. IEEE, 2021.

[37] Hamzeh Mirhaji, Mohsen Soleymani, Abbas Asakereh, and Saman Ab-
danan Mehdizadeh. Fruit detection and load estimation of an orange
orchard using the yolo models through simple approaches in different
imaging and illumination conditions. Computers and Electronics in
Agriculture, 191:106533, 2021.

[38] Miand Mostafa and Milad Ghantous. A yolo based approach for
traffic light recognition for adas systems. In 2022 2nd International
Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC),
pages 225–229. IEEE, 2022.

[39] Huy Hoang Nguyen, Thi Nhung Ta, Ngoc Cuong Nguyen, Hung Manh
Pham, Duc Minh Nguyen, et al. Yolo based real-time human detection
for smart video surveillance at the edge. In 2020 IEEE eighth inter-
national conference on communications and electronics (ICCE), pages
439–444. IEEE, 2021.

[40] Radu Oprea. Traffic signs detection europe dataset. https://universe.
roboflow.com/radu-oprea-r4xnm/traffic-signs-detection-europe, feb
2024. visited on 2024-07-12.

[41] Rafael Padilla, Sergio L Netto, and Eduardo AB Da Silva. A survey on
performance metrics for object-detection algorithms. In 2020 interna-
tional conference on systems, signals and image processing (IWSSIP),
pages 237–242. IEEE, 2020.

[42] Govind S Patel, Ashish A Desai, Yogesh Y Kamble, Ganesh V Pujari,
Priyanka A Chougule, and Varsha A Jujare. Identification and separation
of medicine through robot using yolo and cnn algorithms for healthcare.
In 2023 International Conference on Artificial Intelligence for Innova-
tions in Healthcare Industries (ICAIIHI), volume 1, pages 1–5. IEEE,
2023.

[43] Paul Paul Tsoi. YOLO11: The cutting-edge evolution in object detection
— a brief review of the latest in the yolo series. https://medium.com,
October 2024. Accessed: 2024-10-17.

[44] Minh-Tan Pham, Luc Courtrai, Chloé Friguet, Sébastien Lefèvre, and
Alexandre Baussard. Yolo-fine: One-stage detector of small objects
under various backgrounds in remote sensing images. Remote Sensing,
12(15):2501, 2020.

[45] Francesco Prinzi, Marco Insalaco, Alessia Orlando, Salvatore Gaglio,
and Salvatore Vitabile. A yolo-based model for breast cancer detection
in mammograms. Cognitive Computation, 16(1):107–120, 2024.

[46] Sovit Rath. Yolov8 ultralytics: State-of-the-art yolo models.
LearnOpenCV–Learn OpenCV, PyTorch, Keras, TensorflowWith Exam-
ples and Tutorials, 2023.

[47] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages
779–788, 2016.

[48] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7263–7271, 2017.

[49] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767, 2018.

[50] Arunabha M Roy, Jayabrata Bhaduri, Teerath Kumar, and Kislay Raj.
Wildect-yolo: An efficient and robust computer vision-based accurate
object localization model for automated endangered wildlife detection.
Ecological Informatics, 75:101919, 2023.

[51] Arunabha Mohan Roy, Jayabrata Bhaduri, Teerath Kumar, and Kislay
Raj. A computer vision-based object localization model for endangered
wildlife detection. Ecological Economics, Forthcoming, 2022.

[52] SIDDHARTH SAH. Ships/vessels in aerial images. https://www.kaggle.
com/datasets/siddharthkumarsah/ships-in-aerial-images/data, july 2023.
visited on 2024-07-12.

[53] Ranjan Sapkota, Rizwan Qureshi, Marco Flores Calero, Muhammad
Hussain, Chetan Badjugar, Upesh Nepal, Alwin Poulose, Peter Zeno,
Uday Bhanu Prakash Vaddevolu, Hong Yan, et al. Yolov10 to its genesis:
A decadal and comprehensive review of the you only look once series.
arXiv preprint arXiv:2406.19407, 2024.

[54] Abhishek Sarda, Shubhra Dixit, and Anupama Bhan. Object detection
for autonomous driving using yolo [you only look once] algorithm.
In 2021 Third international conference on intelligent communication
technologies and virtual mobile networks (ICICV), pages 1370–1374.
IEEE, 2021.

[55] Maged Shoman, Gabriel Lanzaro, Tarek Sayed, and Suliman Gargoum.
Autonomous vehicle-pedestrian interaction modeling platform: A case
study in four major cities. Journal of Transportation Engineering Part
A Systems, 06 2024.

[56] Maged Shoman, Dongdong Wang, Armstrong Aboah, and Mohamed
Abdel-Aty. Enhancing traffic safety with parallel dense video captioning
for end-to-end event analysis, 2024.

[57] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition, 2015.

[58] Mupparaju Sohan, Thotakura Sai Ram, Rami Reddy, and Ch Venkata. A
review on yolov8 and its advancements. In International Conference on
Data Intelligence and Cognitive Informatics, pages 529–545. Springer,
2024.

[59] suranaree university of technology. africa wild life dataset. https:
//universe.roboflow.com/suranaree-university-of-technology-wqhl6/
africa-wild-life, feb 2023. visited on 2024-07-12.

[60] Ultralytics. YOLOv5: A state-of-the-art real-time object detection
system. https://docs.ultralytics.com, 2021. Accessed: insert date here.

[61] Amir Ulykbek, Azamat Serek, and Magzhan Zhailau. A comprehensive
review of object detection in yolo: Evolution, variants, and applications.

[62] NL Vidya, M Meghana, P Ravi, and Nithin Kumar. Virtual fencing
using yolo framework in agriculture field. In 2021 Third International
Conference on Intelligent Communication Technologies and Virtual
Mobile Networks (ICICV), pages 441–446. IEEE, 2021.

[63] P. Viola and M. Jones. Rapid object detection using a boosted cascade
of simple features. In Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001,
volume 1, pages I–I, 2001.

[64] Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, and
Guiguang Ding. Yolov10: Real-time end-to-end object detection. arXiv
preprint arXiv:2405.14458, 2024.

[65] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.
Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-
time object detectors. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 7464–7475, 2023.

[66] Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. Yolov9:
Learning what you want to learn using programmable gradient infor-
mation. arXiv preprint arXiv:2402.13616, 2024.

[67] Yifan Wang, Lin Yang, Hong Chen, Aamir Hussain, Congcong Ma, and
Malek Al-gabri. Mushroom-yolo: A deep learning algorithm for mush-
room growth recognition based on improved yolov5 in agriculture 4.0.
In 2022 IEEE 20th International Conference on Industrial Informatics
(INDIN), pages 239–244. IEEE, 2022.

[68] Tingting Zhao, Xiaoli Yi, Zhiyong Zeng, and Tao Feng. Mobilenet-yolo
based wildlife detection model: A case study in yunnan tongbiguan na-
ture reserve, china. Journal of Intelligent & Fuzzy Systems, 41(1):2171–
2181, 2021.

[69] Yifei Zheng and Hongling Zhang. Video analysis in sports by
lightweight object detection network under the background of sports

 https://universe.roboflow.com/radu-oprea-r4xnm/traffic-signs-detection-europe 
 https://universe.roboflow.com/radu-oprea-r4xnm/traffic-signs-detection-europe 
https://medium.com
 https://www.kaggle.com/datasets/siddharthkumarsah/ships-in-aerial-images/data 
 https://www.kaggle.com/datasets/siddharthkumarsah/ships-in-aerial-images/data 
 https://universe.roboflow.com/suranaree-university-of-technology-wqhl6/africa-wild-life 
 https://universe.roboflow.com/suranaree-university-of-technology-wqhl6/africa-wild-life 
 https://universe.roboflow.com/suranaree-university-of-technology-wqhl6/africa-wild-life 
https://docs.ultralytics.com


20

industry development. Computational Intelligence and Neuroscience,
2022:1–10, 08 2022.

[70] Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping
Ye. Object detection in 20 years: A survey. Proceedings of the IEEE,
111(3):257–276, 2023.


	Introduction and Positioning
	Related Work
	Benchmark Setup
	Datasets
	Traffic Signs Dataset
	Africa Wild Life Dataset
	Ships/Vessels Dataset

	Models
	Comparative Analysis: Ultralytics vs. Original YOLO Models
	YOLOv3u
	YOLOv5u
	YOLOv8
	YOLOv9
	YOLOv10
	YOLO11

	Hardware and Software Setup
	Metrics

	Benchmark Results and Discussion
	Results
	Traffic Signs Dataset
	Africa Wildlife Dataset
	Ships and Vessels Dataset

	Discussion
	Accuracy
	Computational Efficiency
	Model Size
	Overall Performance
	Object Size and Rotation Detection
	The Rise of YOLO11 Over YOLOv8
	Dataset Size
	Impact of Training Datasets


	Conclusion
	References

